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Abstract

This paper shows that the asymptotic modelling method using positive and negative restraints may be applied to systems

where the constraints do not affect the number of degrees of freedom. This applies in cases where the constraints are not

associated with mass or inertia. The existence and convergence theorems have been refined to cover this type of systems.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Asymptotic modelling is a popular method [1–5], introduced by Courant [1] to remove the limitation on the
choice of admissible functions in the Rayleigh–Ritz method, and later adopted in many disciplines including
the finite elements [2]. The recent introduction of the use of negative restraints or penalty parameters [3–5] has
made this procedure more reliable as it is possible to determine the maximum possible error due to the
violation of a constraint due to the asymptotic modeling. A number of publications that use the method are
listed in Refs. [3–5].

Two recently published theorems on the existence of natural frequencies of systems with artificial restraints
and their convergence justify the use of positive and negative restraints in asymptotic modelling [4]. The
theorems show that if h restraints of positive or negative stiffness are added to an n degree of freedom system
(A) where hon, then for the resulting system (Ah), there exist at least (n–h) natural frequencies and modes and
that as the h stiffness parameters approach infinity, the (n–h) natural frequencies and modes of System Ah

would asymptotically approach those of the n degree of freedom system subject to h constraints ( ~Ah). In
deriving these theorems the constraints were assumed to prevent the motion of a mass or an inertial element so
as to reduce the number of degrees of freedom by the number of constraints. There are cases where a
constraint may be applied in such a way that it does not alter the vibratory degrees of freedom of a system but
can alter its shape. For example, consider the case of a massless cantilever beam carrying a particle of mass m0

at its free end as shown in Fig. 1a. This is a single degree of freedom system. If a constraint in the form of a
prop support were introduced as shown in Fig. 1b, its vibratory form would be constrained to have zero
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Constrained, restrained and unrestrained systems: (a) System A, (b) System ~Að1Þ, (c) System A(1), (d) System B1, and (e) System ~B1.
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displacement at the prop but it would still retain its status of single degree of freedom system as the mass can
vibrate. The purpose of this note is to show how the asymptotic modelling method using positive and negative
restraints [4] may be applied to such systems where constraints do not affect the number of degrees of freedom.
The existence and convergence theorems in Ref. [4] have been refined to cover the cases where the constraints
are not associated with mass or inertia.

2. Derivations and results

The systems in Figs. 1a and b, being single degree of freedom systems, have one and only one natural
frequency, which for each case may be determined exactly, or approximately, in the latter case using the
Rayleigh–Ritz method. For convenience these systems are labeled A and ~Að1Þ, respectively. The notation is
consistent with that used in Ref. [4] but the subscript 1 is given in brackets to indicate that the constraint only
changes the form of vibration and not the degrees of freedom. Taking the clamped end of the beam as the
origin of the x-coordinate, if functions of the type

f ðxÞ ¼
Xn

1

aiðx=LÞiþ1 (1)

were used for the lateral vibratory deflection of the beam in a Rayleigh–Ritz procedure, the resulting
expression for the natural frequency would be an upperbound estimate of System A as these functions satisfy
the admissibility requirement that the deflection of the beam and its slope are zero at the clamped end. For
System A it is possible to obtain exact results with only two terms in the above series because the actual mode
consists only of quadratic and cubic functions.

The potential energy of the beam is given by

V m ¼

Z L

0

ðEI=2Þðf 00Þ2 dx. (2)

Here, EI and L are the flexural rigidity and length of the beam, respectively.
The kinetic energy is

Tm ¼ o2Cm where Cm ¼ ðm0=2Þðf ðLÞÞ
2 (3)

in which m0 is the magnitude of the attached mass.
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The Rayleigh–Ritz minimization equations ðqVm=qaiÞ � o2ðqCm=qaiÞ ¼ 0 result in the following eigenvalue
equation:

½K�fag � o2½M�fag ¼ f0g, (4)

where

Ki;j ¼
ði þ 1Þiðj þ 1ÞjEI

ði þ j � 1ÞL3
(5)

and

Mi;j ¼ m0. (6)

The natural frequencies and modes of System A may be obtained by solving Eq. (4). The functions given by
Eq. (1) are not admissible for System ~Að1Þ. However, numerical results for the deflection of a propped
cantilever obtained using the above series with positive and negative penalty functions—a generic term for the
artificial restraints—to enforce constraints show that it is possible to determine a true lower bound estimate of
the deflection in this way [5]. The proof presented in the present paper shows that these functions may be used
for frequency calculations if the system is modelled asymptotically, and an upperbound estimate of the natural
frequency obtained, by replacing the prop with a spring support with large positive and negative stiffness
values as shown in Fig. 1c. This system is labelled A(1). The subscript 1 in bracket indicates that this system is
obtained by applying a single restraint to System A along a coordinate that does not involve the motion of a
mass or inertia. (In cases where a restraint is applied along a coordinate that involves the motion of mass or
inertia the subscript would be given without brackets.)

The results for System A(1) may be generated by including the strain energy of the restraint in the total
potential energy. Eq. (2) would change to

Vm ¼

Z L

0

ðEI=2Þðf 00Þ2dxþ ðk=2Þðf ðbÞÞ2, (2a)

where b is the x-coordinate of the point at which the restraint is located and k is the stiffness of the restraint.
This would give the following expression for the stiffness coefficient:

Ki;j ¼
ði þ 1Þiðj þ 1ÞjEI

ði þ j � 1ÞL3
þ k

b

L

� �iþjþ2

. (5a)

The results for the natural frequency for n ¼ 6 and b ¼ 0:5 (the beam restrained at mid-span) are presented
in Fig. 2. A frequency parameter m given by m ¼ o2mL3=EI is plotted against the stiffness of the artificial
restraint defined non-dimensionally as Z ¼ kL3=EI . Using the static stiffness values [6] tabulated for the
cantilever case and determined by applying the exact slope-deflection equations for the propped cantilever, the
natural frequency parameter of systems A and ( ~Að1Þ) were found to be 3.0 and 13.8, respectively. As can be
seen the frequency parameter for the constrained system (dotted line in Fig. 2) is bounded by the values
obtained using an artificial restraint with large positive and negative stiffness. Since this system has a
discontinuity at x ¼ b, the series in Eq. (1) does not give exact results but only upperbound values.
Nevertheless, they agree well with exact results and the discrepancy cannot be noticed in the plot. As can be
seen from this figure, the natural frequency asymptotically approaches the frequency of the constrained system
as the magnitude of stiffness takes very large values, irrespective of the sign. The frequency becomes zero at a
critical stiffness value, which in this case is about �3EI/b3 (Z ¼ �24). There is a range in the negative stiffness
values in which the frequency parameter is negative indicating the absence of a natural frequency. The curve
has a pole at a stiffness value of approximately �111EI/L3 and the system has no real natural frequency for
�111oZo�24. In Ref. [5], the pole occurs at a point where the overall stiffness of the structure is zero,
corresponding in the present case to Z ¼ �24. However, in the frequency squared versus stiffness plot the pole
is at the point where the structural stiffness changes from negative to positive infinity.

The theorems presented in [4] do not explain the convergence seen in this example. To understand this let us
introduce an imaginary mass of finite but adjustable magnitude m1 at the point where the restraint is applied
resulting in System B1 as shown in Fig. 1d. This changes the expression for the elements of the mass matrix
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Fig. 2. Variation of the natural frequency with the stiffness of an artificial restraint.
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given by Eq. (6) to

Mi;j ¼ m0 þm1
b

L

� �iþjþ2

. (6a)

This system is a two degree of freedom system, and by the existence and convergence theorems [4] it will
have at least one natural frequency, and as the magnitude of the stiffness parameter k approaches infinity one
of its natural frequencies would asymptotically approach that of the corresponding constrained System ~B1 (see
Fig. 1e) as follows:

As k!1; o1;1! ~o1;1 and o2;1 !1. (7a,b)

For positive stiffness, the frequency of the constrained system is approached from below:

As k!�1; o2;1! ~o1;1 and o1;1e<. (8a,b)

In this case, the frequency of the constrained system is approached from above.
Eq. (8b) states that for very large negative k, the lowest frequency is imaginary. It should be noted here that

the magnitude of the mass m1 will have no effect on the frequency of the constrained system ~B1 as the motion
of the mass is prevented. Therefore, the natural frequency of Systems ~Að1Þ and ~B1 must be equal. This means
an asymptotic model B1 may be used to obtain the natural frequency of ~Að1Þ. Since the magnitude of m1 has no
influence on the frequency of the constrained system, it could be set to zero. That is to say an asymptotic
model A(1) could be used to find the natural frequency of the constrained system ~Að1Þ. This may be stated
mathematically as follows:

Að1Þ 2 B1 and for m1 ¼ 0; Að1Þ ¼ B1, (9)

~Að1Þ 2 ~B1 and for m1 ¼ 0; ~Að1Þ ¼ ~B1. (10)

From the existence and convergence theorems which are applicable for systems B1 and ~B1,

as k!�1; B1 ! ~B1. (11)

From Eqs. (9)–(11),

as k!�1; Að1Þ ! ~Að1Þ. (12)

Although A(1) and ~Að1Þ are special cases of B1 and ~B1, since A(1) and ~Að1Þ are single degree of freedom
systems it is not possible to use Eqs. (7) and (8) for these cases with the same notation. To understand the
behaviour of the frequency–stiffness relationship in such cases, it is instructive to consider the effect of the
mass m1 on the natural frequencies of B1:

As m1! 0 for k40; o2;1!1 and o1;1! o1;ð1Þ, (13)

where o1,(1) is the first (and only) natural frequency of A(1).
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From Eqs. (7a) and (13),

as k!1; o1;ð1Þ ! ~o1;1. (14)

Here the approach is from below.
It may be noted here that the presence of a mass or inertia along a constrained coordinate does not alter the

frequencies. Therefore,

~o1;ð1Þ ¼ ~o1;1. (15)

Substituting Eq. (15) into (14) gives

k!1; o1;ð1Þ ! ~o1;ð1Þ. (16)

This is to be expected from Eq. (12) but the above steps show how it occurs.
The behaviour of System A(1) for negative values of stiffness is not so straightforward. The existence of a

natural frequency is not guaranteed for all negative values. However, from Eq. (12), it is clear that

as k!�1; o1;ð1Þ ! ~o1;ð1Þ. (17)

Noting that the natural frequencies of a system cannot increase with a decrease in stiffness, in the above case the
natural frequency of the restrained system must approach the natural frequency of the constrained system from
above. Eqs. (16) and (17) suggest that the natural frequency o1,(1) of A(1) must approach the natural frequency
~o1;ð1Þ of the constrained system ~Að1Þ from different sides as the stiffness approaches plus or minus infinity. This is
possible only if the frequency squared versus stiffness curve has a pole. The curve on both sides of the pole
asymptotically approaches the natural frequency of the constrained system from different sides. The results show
that the use of positive and negative stiffness values in asymptotic modelling is justified for this case too. The
above example is only an illustration. Using the principle of mathematical induction, it can be shown that the
arguments presented here are applicable for systems with any number of constraints, as given in Ref. [4] for the
case when the constraints are associated with the motion of a mass or an inertial element. In practice, asymptotic
modelling is more likely to be used for determining the natural frequencies of continuous systems. However, for
the sake of completeness, the theorems in Ref. [4] need to be restated in a more general way as follows.

3. Existence and convergence theorems for systems with constraints that change the number of degrees of

freedom

Theorem (1.A). If h restraints of positive or negative stiffness are added to an n degree of freedom system (A)
where hon, along coordinates that are directly associated with a mass or an inertial element, then for the

resulting system (Ah), there exist at least (n– h) natural frequencies and modes.
Theorem (1.B). Furthermore, as the h stiffness parameters approach infinity, the (n– h) natural frequencies and

modes of System Ah would asymptotically approach those of the n degree of freedom system subject to h

constraints ( ~Ah).

4. Existence and convergence theorems for systems with constraints that do not affect the number of degrees of

freedom

Theorem (2.A). If h restraints of positive or negative stiffness are added to an n degree of freedom system (A),
along coordinates that are not directly associated with a mass or an inertial element, then for the resulting system

(A(h)), there exist at least (n) natural frequencies and modes for all positive values of stiffness, and for very large

values of negative stiffness, but for a finite range of negative stiffness values, in the vicinity of h specific critical

values some of the frequencies may not exist.

Theorem (2.B). As the magnitude of the h stiffness parameters approach infinity, the n natural frequencies and

modes of System Ah would asymptotically approach those of the n degree of freedom system subject to h

constraints ( ~AðhÞ) irrespective of the sign of the stiffness.
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5. Concluding remarks

The statements of existence and convergence theorems that justify asymptotic modelling in the
determination of natural frequencies have been refined to include cases where the constraints do not change
the number of degrees of freedom. For systems that are subject to restraints that are not directly associated
with the motion of a mass or an inertial element, some or all of the natural frequencies may not exist in the
vicinity of some critical stiffness parameters. In all cases, the natural frequencies of the constrained system are
asymptotically approached by the natural frequencies of the system where the constraints are replaced with
artificial restraints having very large positive or negative stiffness.
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